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I. Php: Condcns. Matter 3 (1991) 7763-7018 Printed in the UK 

Quantum field approach to a low-density electron system 

L G J van Dijk and G Vertogen 
Institute for Thmretical Physics, Catholic University, "o ive ld .  6525 ED Nijmegen. 
The Netherlands 

Received 25 June 1990 

AbslracL The semiclassical approach to an interacting electron system with low density 
is replaced by a fully quantum mechanical discussion. The energies of the ground state 
and the low lying excited slater are calculated awrding U) the methods of quantum 
6eId theory. A comparison is made with the mulls of the existing appmach. The eiiect 
of a magnetic field on the low lying stales of the electron system is calculated in a self- 
consistent way. The low density electron splem d o g  not show a Meissner-Ochsenield 
effect 

1. Introduction 

The jellium model plays a prominent part in our understanding of the behaviour of 
the solid state. This model consists of a number of interacting electrons that move 
against a uniform background of neutralizing positive charge. Up to now its exact 
solution is unknown and one has to resort to approximation methods in order to 
study its behaviour. According to Wigner [l], who used a semiclassical approach, the 
ground state of the jeUium model has a lattice structure at sufficiently low densities. 
This electron lattice is known as the Wigner lattice. For a review of the existing 
literature on the Wigner lattice we refer to Care and March [2]. 

The aim of the present article is to discuss the properties of the ground state and 
the low lying excited states of the low density jellium model from a purely quantum 
mechanical point of view. Our paper is organized in the following way. First, in 
section 2, we discuss briefly the formation of a lattice structure in the classical jellium 
model. Next, in section 3, we give a rather elaborated discussion of the ground 
state using a quantum field approach. Our calculations are based on the variational 
method using a Hartree-Fbck trial state. Most of the results are familiar, but they 
are now based on a fully quantum mechanical ground. In section 4 we consider the 
influence of correlation on the HartreeFbck results. Section 5 deals with the effect of 
a magnetic field on the Wigner lattice and pays attention to the eventual appearance 
of superconductivity. Finally the results are discussed in section 6. 

2. Lattice formation in the classical jellium model 

First of all we recall briefly the jellium model. The starting-point of our discussion 
is a system that consists of N electrons and N positive ions moving in a volume 0. 
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n@ 
The Hamiltonian of this system is given by 
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where e is the magnitude of the charge of an electron or ion, m the mass of an eleo 
tron, M the mass of an ion, whereas rk and pk denote the position and momentum 
of electron k and pk and T~ those of ion k. Next we use the decomposition 

- e2 = C V ( q ) e x p ( i q . r )  E y / d 3 q V ( q ) e x p ( i q . r )  s2 (22) r 9 ( 2 p )  

with 

It should be remarked here that strictly speaking the expression (2.3) is only true if 
the Coulomb potential 1/r is replaced by the Yuhwa potential e-Wr/r and the h i t  
p -+ 0 is taken after performing the integration. Substitution of (2.2) into (2.1) gives 

+exp[iq.(Pk - ~ 0 1 ) - - 2 ~ e x p I i q . ( r k    PI)^] - N V ( O )  (2.4) 
W 

where the prime in the summation over q indicates that the q = 0 term is excluded. 
The term N V ( 0 )  does not contribute to the energy per electron in the thermo- 
dynamic limit, as follows from the integral representation (2.3). Consequentiy this 
term can be neglected. The jellium model is then obtained by putting the momenta 
of the ions equal to zero and by averaging the Hamiltonian (2.4) over all possible 
configurations of the ions attributing equal weight to them. The result is a homo- 
geneous positively charged background for the electrons The Hamiltonian of the 
jellium model is 

Here we pay attention to the energy of the ground state of the classical jellium 
model. This means that the momenta of the electrons are zero and that we must 
look for a distribution function @ ( r l , .  . . , r N )  that minimiis the energy expression 

E = f E‘ V ( q )  Jd3rl . . .d3rN@(r1,. . . , r N )  X e x p I i q .  ( r k  - rr ) ]  (2.6) 
9 k#l  

where CP is normalized, i.e. 

d3r, . . . dSrNCP(r,, . . . , r N )  = 1. J (27) 



Quantum jield approach to a low-density electron ystem 776.5 

As discussed by Peierls [3] a regular lattice of electrons is expected to be the most 
stable configuration. Denoting the lattice positions by the set { R J k  = 1,. . . , N} 
and putting 

N 

@(rl,. . . ,rN) = b3(rk - R ~ )  
k=l 

we obtain using (2.3) 

The expression (2.9) contains a summation over the lattice points, which can be easily 
performed. Then the energy per electron, e = E / N ,  appears to be 

= -(e‘$ 27re2 - cc‘ $) 
K. 9 

(2.10) 

where K,, denotes a reciprocal lattice vector. The energy e is negative for all electron 
densities, as the primitive unit cell of the reciprocal lattice contains N q points. 
Clearly expression (2.10) consists of two divergent terms. However, their difference 
is finite as can be shown using the Madelung or Ewald summation procedure. For 
several lattices the energy E has been calculated, see e.g. Sholl 141. It appears that 
the body-centred cubic lattice has the lowest energy, but it should be remarked here 
that the energy difference with other simple lattice structures is extremely small. 

Summarizing we can conclude that the ground state of the classical jellium model 
is a BCC lattice for all electron densities. 

3. Hartree-Fock ground state of the quantum mechanical low-density jellium model 

The Hamiltonian of the quantum mechanical version of the jellium model (25) reads 
in the formalism of second quantization 

where the fermion o p e r a m  ct, and cka create and annihilate respectively an elec 
tron in a plane wave state labeled by the wave vector k and spin CT. The prime in 
the summation indicates that the g = 0 term is excluded because of the presence of 
the homogeneous positively charged background. 

Consider a system consisting of 2N electrons, where the number 2N has been 
chosen for convenience. The ground state of the jellium model can be expressed as 

19) = /d37i ...d3T Z N F ( ~ ~ , ~ ~ ; . . . ; T ~ N , C T Z N ) ~ ~ , ( ~ ~ ) . . . ~ ~ ~ ~ ( ~ Z N ) I )  
U l v . . . r U l N  

(3.2) 
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where I) denotes the vacuum state and $$(r) is the usual field operator creating a 
fermion with spin U at the position r,  

L G J vm Dijk and G Krtogen 

(3.3) 

The function F is determined by the requirement that it must minimize the energy 
of the system, i.e. the expression 

E = (*lHIQ).  (3.4) 

It should be remarked here that F is not the Schriidinger representation of the 
ground state of the system. m a t  wavefunction is obtained by constructing the anti- 
symmetrized form of the original function F. The quantity IFI2 plays a similar role 
as the classical distribution function @. 

In practice the exact calculation of the ground state energy is still an insurmount- 
able problem. Therefore, one has to resort to approximation methods. Here we 
have chosen the variational method because of its elegant and insight providing char- 
acter. In this section we consider the simplest amalz for F, namely the so-called 
HartreeFock (HF) approximation, i.e. 

2N 

F ( r l ,  ui;. . . ; rZNI O 2 N )  = n fn(rn7 (3.5) 
n=l  

where the function f,, represents a normalized one-particle wave function, and C 
is the normalization constant for IQ). Next we recall that the ground state of the 
classical system is a Bcc-lattice. Such a structure can also be expected in the quantum 
mechanical analogue provided that the one-particle wave functions are localized but 
such that their attendant kinetic energies are small. That requirement can only be 
fulfilled for an electron system of sufficiently low density. Therefore we restrict our- 
selves to the low-density jellium model. The translational invariance of the supposed 
lattice structure implies 

fn(rn,un) = f(rn-%)&emT,, (3.6) 

with R, being a lattice vector and 7, the spin of the particle localized at R,. 
Substitution of (3.5) into (3.2) and making use of (3.6) gives us the following HF trial 
state as an approximation of the ground state of the low-density jellium model: 

lQHF) = CdS, . .d$mr(%N)I) (3.7) 

where the operator d$=(Rn) describes the creation of an electron with spin T,, in 
the wavefunction f localized around the lattice point R,: 

d;*(R,) = /d37-9ij$n(r)f(7- - Q. ( 3 4  

Representing the wave function as the Fourier integral 

(3.9) 
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with 

the creation operator (3.8) can be expressed as 

(3.10) 

(3.11) 

It follows immediately from (3.8) that the newly defined creation and annihilation 
operators satis@ the following antimmmutation relations 

where 

S ( R ,  - R,) = /d3r f . ( r  - Rm)f(r - En). (3.13) 

The quantity S(Rm - R,) is the overlap of two wavefunctions centred around R, 
and R, respectively. 

In a first approximation the overlap between the distinct wavefunctions can be 
neglected Then the energy appears to be independent of the spin configuration as 
shown in appendix 1. The resulting energy, which is a functional of the wavefunction 
f ,  is just the Hartree energy 

where 

(3.15) 

Note: it should be stressed here that the expression for the Hartree energy still 
contains terms of the order of the overlap. These terms do not originate from 
the presence of S ( R ,  - R,) in the anticommutation relations (3.12) but are due 
to the form of V(q)  given by (3.15). Clearly ?(q) is not the Fourier transform 
of the Coulomb potential but of some smeared-out potential that depends on the 
wavefunction f itself. 

The explicit form of the wavefunction f follows from the condition that f must 
minimize E&). That minimization procedure is discussed in appendix 2. It appears 
that the resulting form is given by 

(3.16) 
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with 
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(3.17) 

provided that all terms of the order of the overlap are neglected The attendant 
Hartree energy is 

8 r N e 2 a  
n E$? = E,, + 2 N  (3.18) 

where E,, denotes the energy of the classical electron lattice. We l i e  to remark here 
that E$) is not the energy obtained by substituting (3.16) into (3.14), the difference 
being of the order of the overlap. 

In order to compare our results with existing ones we use. the Bohr unit a. = 
h2/me2 as the unit of length and the Rydberg, which equals e2/2a0,  as the unit 
of energy. Further we express the electron density p in terms of the dimensionless 
parameter ra according to: 

(3.19) 

Then the following expressions are obtained for a and E,!? respectively: 

a = 1 2 P d  3 / 2 4  (3.20) 

(3.21) 

where A is the Madelung constant of the classical electron lattice. 

and appears to be 
The overlap (3.13) can be easily calculated for a wavefunction of the form (3.16) 

S(R,,)=exp ( -- 5) = e x p  ( -  L E 2  mn 4 2 )  (3.22) 

I - 
with IR,-R,I = IR,,,,, = R,, and R,, = Rm,/rsao,  i.e. R,, is a dimension- 
less measure for the distance between the lattice positions R,,, and R,. The quantity 
R,, is of the order of one or larger as the lattice distance is of the order of r,ao. 
Consequently the overlap is very small indeed at low density, i.e. for large T ~ .  

Our results (3.20) and (3.21) are exactly equal to those of Wigner, Le. the Wiper 
treatment is equivalent to an approximate Hanree-Fock calculation based on local- 
ized one-electron wavefunctions. The approximation consists of neglecting the mutual 
overlap (3.22) of the wavefunctions in the anticommutation relations (3.12) plus all 
terms in the resulting Hanree energy, which are of the same order as the overlap. 

The difference between the Hartree-Rck energy and the Hanree energy is known 
as the exchange energy and depends on the spin configuration of the underlying 
lattice. In the following we discuss the Hartree-Fock energy up to order S(R,,)2 
for both the ferromagnetic and the antiferromagnetic spin configuration. The overlap 
terms of order S(Rm,)2 are two-particle exchange terms. These terms have also 

- 
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been discussed by Carr [SI. Higher order corrections to the Wigner energy (3.21) are 
not considered here because of the complexity of the calculations. 

As shown in appendb 2 the wavefunction, that minimizes the Hartree-Fock en- 
ergy EHF up to order S(R,,,)2, is given by (3.16) plus correction terms of order 
S(R,,J2. The effect of these last terms on EHF, however, is of order S(R,,,,)4 
and can therefore be neglected. Thus ExF can be calculated exactly up to order 
S(R,,,)2, using the wavefunction (3.16) with the Wigner a (3.17). The effect of the 
overlap on the wavefunction itself is extremely dacu l t  to calculate even up to order 
S(R,,J2. However, that effect can be estimated by choosing the wave function 
(3.16) as a trial function with variational parameter a and subsequently minimizing 
the expression for the Hartree-Fock energy up to order S(R,,,,,)2 with respect to a. 
The difference between the resulting value of a and the Wigner value (3.17) is then 
a measure for the influence of exchange on the wavefunction. 

Up to order S(R,,)z the Hartree-Fbck energy consists of two terms. The first 
term is obtained by substituting (3.16) into (3.14) and performing the lattice sum. It 
is the total Hartree energy, including all terms of order S(R,n)2. The second term 
is the two-particle exchange energy A EHF.  The calculation of this energy is given in 
appendu 1. Thus the Hartree-Fock energy can be expressed as 

where 
- &re2 
V(q)  = - exp( -aq2)  

l-2 d (3.24) 

and the summation over K,, (n = 1 , 2 , .  . . , 2 N )  runs over the reciprocal lattice 
vectors The contribution AE,, depends on the spin configuration of the Wigner 
lattice. Here we consider both the purely ferromagnetic conliguration and an anti- 
ferromagnetic configuration consisting of two interpenetrating sublattices having an 
oppositely directed purely ferromagnetic spin configuration. 

The ferromagnetic two-particle exchange energy is given in expression (A1.24) of 
appendix 1. After performing a simple lattice summation we find 

(3.25) 

where the summation over R, ( n = 1 , 2 ,  . . . , 2  N ) runs over the sites of the Wigner 
lattice, whose reciprocal lattice vectors are denoted by K,. The antiferromagnetic 
contribution, which is given in (A1.25) is found to read, after performing a simple 
lattice summation 

(3.26) 
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where the summations over R, and K,, ( n = 1 , 2 , .  . . , N ) now run over the sites 
of the ferromagnetic sublattice and its reciprocal lattice vectors respectively. The 
vector 6 describes the position of both sublattices with respect to each other. 

For an explicit calculation of the quantities given by (3.23), (3.25) and (3.26) 
we use the Ewald summation method and replace the Riemann sum over p by an 
integration Then we obtain the following expression for the Hartree-Rck energy 
(see appendix 3): 

+ +e2 $["'.(&) -erfc(&)]] + A E ~ ~  (3.27) 
R.#O 

where p is the Ewald parameter and erfc(+) is the complement of the error function 
erf( x ) .  The ferromagnetic and antiferromagnetic two-particle exchange contributions 
are respectively given by 

and 

It should be remarked here that does not depend on p. The sole reason for 
introducing this parameter is to achieve a rapid convergence of the appearing sums 
over the reciprocal lattice vectors. Next we introduce the dimensionless quantities 
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Then the Hartree-Fock energy can be expressed in Rydberg units reading 

where the Madelung constant A is given by 

The relevant two-particle exchange contributions are given by 

(3.32) 

and 

(3.33) 

The quantities given by (3.30), (3.31), (3.32) and (3.33) must be calculated nu- 
merically. In order to check our computer program we recalculated the Madelung 
constants of four simple lattice structures. Our results are exactly those of Sholl [4] 
and are reproduced in table I for convenience' sake. It should be mentioned here that 
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Table L Madelung canstants of lour simple lattice structura. 

Lattice structure Madclung " a n t  A 

sc 1.160u 
FIX 1.79175 
HCP 1.79168 
Bcc 1.79186 

the expres! n (3.31) cannot be used for the caln.-.ion of the ILJelung wnstant 
of the hcp-lattice, as the attendant unit cell contains two electrons. Instead one has 
to start from expression (3.14) with N electrons at the lattice sites R,, of the unit 
cells and N electrons at the positions R, + 6, where 6 denotes the position of the 
electron inside the unit cell. 

The exact value of EHF up to order S(R,Ja  was obtained hy substituting the 
Wigner value Z = into (3.30). (3.32) and (3.33). As is usual we took as a 
measure for the stability of the lattice the energy difference between the Har t r ee  
Fock energy EHF of the Wigner lattice and the Hartree-Fock energy E,, of the free 
electron gas. The energy E,, in Rydbergs is given by [6] 

2.2099 0.9163 Eo = 2 N (- - - 
7: pa 

(3.34) 

In figure 1 tbis energy difference per electron, E = l/2N(EHF - Eo) ,  is shown for 
all simple ferromagnetic and antiferromagnetic lattice structures. 

0 5 10 15 

ro 

I 

Figure 1. Energy difference per electron, e, between the Hart-Fd energy of lhc 
Wigner lattice and that of the free eleclron gas plotted as a function of r. for the simple 
ferromagnetic (F) and antiferromagnetic ( A F )  lattice structures. 

In order to demonstrate the influence of the two-particle exchange contributions 
on the width of the oneparticle wavefunction the value of the variational parameter 
6 was obtained numerically by minimizing EHF with respect to 6 using an iteration 
procedure that starts from the Wigner value. In figure 2 the resulting 6 is shown 
as a function of r, for a ferromagnetic Bcc-lattice. Here the r,-dependence of 



Quantum f i l d  approach to a lowdensiy electron sysrem 7773 

0.6 
0 10 20 30 

1s 

Flyre 2. Square of the width of the one-panicle wavefunclion, a, given as a function 
of rr in units of the Wigner value 010 = ~T:‘~CZ; for the ferromagnetic 8cc-latlice. 

the Wigner Z is represented as welL It appears that the other ferromagnetic and 
antiferromagnetic lattices give practically the same r,-dependence of 5. 

Summarizing, the results of the present Hartree-Fock calculations are as follows: 

(i) In contrast with the classical electron system the ground state of the quantum 
mechanical system is a Wigner lattice only at low densities. In the case of a BCC- 
lattice we Iind that E = 0 at rd U 5,  Le. the proposed lattice structure is not stable 
for higher densities. 

(U) The two-particle exchange contributions remove the degeneracy of the ground 
state with respect to all possible spin configurations of the lattice. The antiferro- 
magnetic structure is stable compared with the ferromagnetic structure in the range 
5 6 rs 6 14, the ferromagnetic structure has the lowest energy at lower densities, 
rs > 14. In that region, however, the energy difference between both structures 
is extremely small. Consequently a small inaccuracy in the calculation of the two- 
particle exchange contributions can produce a large error in the critical value of rs 
where both lattices have equal energy. As is shown in appendix 4 this accounts for 
the discrepancy between our critical value rb = 14 and Carr’s result ra = 270 [SI. 

(iii) The exchange influences the width of the localized one-electron wavefunG 
tions. It appears that the width increases with respect to the Wigner value, i.e. the 
wave packets become less localized. 

4. Correlation in the Wigner lattice 

The effect of correlation on the HF ground state energy has been discussed by Carr 
[5]. He replaced the original Wiper lattice of uncoupled oscillators by a lattice 
of coupled oscillators. The semiclassical nature of his approach, however, raises 
some epistemological questions In order to discuss these questions properly we fust 
summarize Carr’s approach. 

By analogy with Born’s lattice theory [7] Carr expanded the electron4ectron 
interaction around the equilibrium positions R, of the electrons. These positions are 
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thought to form a lattice. The expansion in terms of the displacements ri - Ri gives 
rise to the following Hamiltonian for the electron system: 

L G J van Dqk and G Veriogen 

where E,, denotes the Madelung enerm of the classical electron lattice. The elemenls 
M ( R i j ) p v ,  with p ,  v = +, y, z, of the second rank tensor M ( R i j )  are given by 

Neglecting the anharmonic terms in the expansion (4.1) ..)e remaining problem was 
solved in the familiar way by introducing the normal coordinates 

with 2 N  denoting the number of electrons and k and X being the wave vector and 
polarization index ( A  = 1 , 2 , 3 )  of the vibrational eigenmodes, respectively. The 
polarization vectors ckA are determined by the eigenvalue equation 

~ e ’ k ’ R ‘ J M ( R i j ) s k A  = mwiAekX (4.4) 
i 

where wkA is the frequency of an eigenmode. Next the quantum nature of the system 
was taken into account by requiring [qkA,pk,A,] = ih6kk,6AA,. Introducing the boson 
operators 

After calculating the eigenfrequencies from (4.4) and performing the sum over k and 
X by using a numerical integration procedure Carr arrived at a ground state energy 
in Rydberg units given by 

(4.7) 



Quantum field approach to a low-densiy electron y s t m  7775 

where E$) is the Wigner ground state energy (3.21). 

quirement 
The ground state laam) that belongs to the energy (4.7), is found by the re- 

akXl%arm) = (4-8) 

for all k and A. In mrdinate-language this ground state is represented by the 
wavefunction 

where the functions f and uij  are given by, respectively, 

Clearly pharm(rlr. . . , r Z N )  is not antisymmetric in the coordinates of the electrons, 
i.e. this wavefunction cannot describe the ground state of the low density electron 
system as the effect of exchange is excluded. In order to estimate a postetim’ the 
magnitude of this neglected contribution to the ground state energy Carr calculated, 
starting from a hasis set of Slater determinants of harmonic osdlator wave functions, 
the matrix elements of the total Hamiltonian. It appeared that the exchange terms 
fell off l i e  exp( -Cr : / ’ ) ,  where C is some constant. Therefore he concluded that 
the expansion of the Hamiltonian (4.1) leads to exact results provided that all these 
exponential terms can be neglected. Then the expression (4.7) for the ground state 
energy of the low density electron system is exact up to order rL3I2. 

In our opinion Carr’s result (4.7) for the ground state energy is correct, but his 
approach raises the following epistemological questions. 

(i) The Hamiltonian, which is obtained after breaking off the expansion (4.1), is 
no longer invariant under the permutation of the coordinates of the electrons. This 
means that the electrons are conceived as distinguishable particles, i.e. Carr’s ap- 
proach violates an important quantum mechanical principle. The resulting system of 
distinguishable electrons vibrating around their equilibrium positions is then consid- 
ered as a quantum system and dealt with accordingly. The question is now whether 
it is possible to derive Carr’s result in a fully quantum mechanical way, i.e. without 
violating the permutation symmetry. 
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(U) Carr describes the electrons in terms of boson operators known as phonons. 
The introduction of the phonon concept, however, is only a mathematical conve- 
nience. Consequently a well-defined relation between the boson operators (4.5) and 
the original fermion operators describing the creation and annihilation of electrons 
must exist. What is the form of that relation? 

(i) The semiclassical approach of Cam does not lead to an antisymmetric ground 
state wave function with the energy as given in (4.7). According to Cam that wave 
function can in principle be calculated a posterion'  by diagonalizing the Hamiltonian 
matrix that is obtained from the complete set of Slater determinants of harmonic 
oscillator wavefunctions, which are the solutiom of (4.6). However Carr does not 
give an algorithm needed to actually perform this calculation. It seems plausible that 
the antisymmetric wavefunction based upon (4.9), i.e. 

I d a r m )  = JdSrl ' . . d  S r2N%arm(fl,. . . , r *  ~ ) + ~ , ( r 1 ) . . . + ~ ~ ~ ( r 2 N ) 1 )  (4.11) 

might possibly lead to the required energy (4.7), provided that all exponential terms 
appearing in the energy expression are neglected. It should be remarked, however, 
that such a suggestion is still unfounded. Obviously a fully quantum mechanical 
approach leads in principle directly to an antisymmetric ground state wavefunction. 
The question is then how to obtain that wavefunction. 

A possible way to answer the posed questions is to use the variational method 
starting with an amab of the form (4.11) for the wavefunction. That would be a 
logical continuation of the approach discussed in section 3. Unfortunately, such an 
umafz is too complicated in the present case. In fact any variational calculation, that 
is based upon an amaB for a many-electron wavefunction unlike the Hartree-Fock 
type, is extremely difficult. Therefore another method must be looked for, that should 
preferably reproduce the original Wigner result as well. Here we introduce a fully 
quantum mechanical approach, which is partly based on work by Brenig (81, Fredkin 
and Werthamer [9] and Pietrass [lo]. 

The starting point of the present approach is to represent the eigenstates of 
the low density electron system as linear combinations of Slater determinants of 
one-electron states. Such a decomposition is always possible provided that these 
one-electron states form a complete set. In view of the results already obtained 
in section 3 the set of eigenstates of the harmonic oscillator is an obvious choice. 
The important consequence of this choice is that the decompositions of the system's 
ground state and low lying excited states involve only a limited number of important 
terms, namely those terms that contain the ground state and the low lying states of 
the harmonic oscillator. In terms of the Cartesian coordinates z, y, z the harmonic 
oscillator eigenfunctions are given by 

(4.12) 

where 6 runs over the basis vectors, 2, j j  and i of a given Cartesian coordinate 
system, 3 = (jz.jy,jz), 3 .  € = 0,1,2,. . ., and H,.i is the Hermite polynomial of 
order 3 .  (. The width a l l2  of the functions f, is still arbitrary. In terms of the 
given one-electron functions the eigenstates I+,,) of a low density electron system 
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consisting of 2N electrons can be expressed as (cf (3.7)) 

where the operator dzo,(Ri) describes the creation of an electron with spin ni in 
the harmonic oscillator eigenfunction fa, localized around lattice site Ri: 

with f J ,  being the Fourier transform of fJ,, i.e. 

j J ( ' )  = 03/2 / dSTfJ(r)e-"" 

(4.15) 

The proposed decomposition (4.13) has the great merit of showing that the ex- 
change contribution to the energy of the ground state and the low lying excited states 
of the low density electron system can be neglected in a first approximation. That 
can be concluded directly from the following two considerations. First of all the 
coefficients A;;;,:;;N (71 )  tend rapidly to zero with increasing 1 ~ ~ 1 , .  . . ,13ZNI for the 
ground state and the low lying excited states. Secondly the overlap between one- 
electron functions, that are centred around different lattice positions is quite small 
for small 1 ~ ~ 1 .  This follows immediately from the expression for the overlap 

(4.16) 

where LoDTa<)'i denotes a Laguerre polynomial with 3, and 3< being the larger 
and the smaller Of the two numbers ( J ~  . i,j2 . i}, respectively. Clearly SalJ2(Rlz)  
is very small at low densities, provided that both the width al l z  of the one-electron 
functions is small compared with the nearest neighbour distance and the exponential 
factor dominates (4.16), i.e. Lll and 1j21 should not become too large. 

In the following we pay attention to the properties of the low density electron 
system at low temperatures, Le. we are only interested in the ground state and the 
low-wing excited states. Our conclusion that the influence of the exchange energy 

a<.< 



?778 

on the low temperature properties can be neglected in a first approximation can be 
expressed mathematically by putting 
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{ d z U i  3 d J w a  (%)I = 'J ,J , (  R12)6mx -1 = 'I& 6R,%6m,oa ' (4.17) 

The crucial step in our approach is to use the decomposition (4.13) in order to 

= ELnMLn) (4.18) 

where E,, is the approximate energy of the low lying eigenstate I+,) as given in 
(4.13), i.e. the exchange contribution to the energy spectrum is neglected. The reason 
for the formulation of an effective Hamiltonian is to analyze the dynamics of the 
system without taking into account the effect of exchange. In order to construct Hee 
we first rewrite H, as given in (3.1), in terms of the fermion operators (4.14). For 
that purpose we use the following relation between plane wavefunctions and oscillator 
eigenfunctions: 

End an effective Hamiltonian with the property 

(4.19) 

where a denotes the position around which the function f, is localized. This relation 
follows directly from the completeness of the set of harmonic oscillator eigenfunctions, 
ie. 

c f ; ( r ) f J ( r ' )  = s 3 ( r - + ' ) .  
3 

The required relation between the different sets of fermion operators then reads 

(4.21) 

Note: the vector a can be arbitrarily chosen. This freedom is essential for obtaining 
the effective Hamiltonian. 

Substitution of (4.21) into (3.1) while taking into aaaunt the arbitrariness of a 
gives rise to the following possible representation of H: 

= T~;?dAU(al)dJzU(%2) 

J1JriU 
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Clearly different sets of vectors at, e = 1,2,. . . ,6 ,  correspond with different repre- 
sentations of the same Hamiltonian H, Le. the eigenfunctions and eigenvalues of H 
do not depend on the choice of a! or, to put it differently, the translational symmetry 
of H is not broken. The reason for introducing the representation (4.22) becomes 
clear when considering Using the decomposition (4.13) and the procedure 
as given in appendix 1 (cf A1.4) we get 

2N 
Wl,...,U1N HI+=) = A,> 1...332N 

a,...,arN m#i 
-1,...C1N 

(4.25) 

The appearing commutators are calculated by using suitably chosen representations 
of H, i.e. we choose a different set a!, e = t , 2 , .  . . ,6, for each commutator. Calling 
thissetaf,a;,af,,a~,a~,a~,weamveat 

. . . .  

[H, dzu; (4 11 I) = T$$ s,,,,( Ri - ai 

0% ojo'o. 

(a; )  I) 
.I% 

{[H,d~.j(Ri) l ,d~.j(Rj)) l )  = KA&; e 
I3l4.5.6 

x s,,xs(Ri - ab)SJj,s(Rj - a ~ ) d ~ ~ ~ ( a ~ ) d ~ u ~ ( a ~ ) l ) .  (4.26) 

A further simplification of (4.26) is obtained by the special choice af = ai = ai = 
a; = Ri and ai = ai = R j .  Then the overlap integrals in (4.26) are equal to one. 
Now the effective Hamiltonian can be formulated. For the resulting exact expression 
for given by (4.25) and (4.26), can also be obtained by replacing H by the 
following effective Hamiltonian He8, provided that the overlap terms are neglected: 

= T , t J , d : ' ~ ( R i ) d J , ~ ( R i )  

i , , l d l 4  

+ $ ~ ~ , , , , ~ ~ ~ u ( ~ i ) d ~ u ~ ( R j ) d , ~ u , ( ~ j ) d , ~ u ( ~ i )  
i#j 333.3r3s,uo' 

(4.27) 

where 
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and 
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with 

(4.30) 

The Hamiltonian (4.27) does not take into account the effect of exchange on the 
dynamics of the electrom. Note that the original translation symmetry is broken in 
Hew 

Next He= is expressed in terms of the following electron-hole operators. 

q,)* = Z & ( W J , A R i ) .  (4.31) 
D 

Substituting (4.31) into (4.27) we obtain 

Heff = C C TADL + 4 C ~ C T L ~ ~ D L ~  %$. 

The operators DjrJ2 satisfy the commutation relations 

(4.32) 
i J ~ J ,  i # j  JfJ4JSJe 

[ D i t J 2 f  D.kJ41 = 6 i j16J2J3D;IJ ,  - 6 J t 3 ~ D ~ s J 2 1 '  (4.33) 

Considering only the low lying eigenstates I$,,) and neglecting the overlap we can 
also use the following effective properties 

CDfi,=l (4.34) 

and 

Wigner's result follows directly by choosing the ground state I&) equal to I Q H F )  
as given in (3.7). Then the ground state energy is approximated by 

EO = ( Q H F I H ~ E I Q H F )  = 2 ~ ~ o o  + i Ch%o 
i#j 

exp[iq. Ri,]. (4.36) 
i # j  q 
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Minimizing Eo with respect to a and neglecting all terms containing erfc( Rij /2@ 
leads to Wiper's ground state energy. 

In order to take into account the electron-electron correlation we substitute first 

into the matrix elements V$,,u6. As shown in appendix 5 that leads to the followhg 
expression for the interamon operator V of an electron lattice with cubic symmetry: 

+ ; a & [ i q * ( s i - ~ ~ ) ] ~ +  &a2[iq-(Si-Sj)l4} (4.38) 

where terms containing q", n > 4,  are neglected and the operators Si are given by 

E 
with 

(4.39) 

Now He* can be treated exactly up to order (Si - S,)a. In that case the relevant 
interaction operator reads 

(4.41) 

with 

e ~ p ( - R ; ~ / 4 a )  erfc(Rij/2&) 
Rtj 

3 3erfc( Rij /2&) e x p (  - R:j / 4 a )  - + (Rij -€)(R;j  * i )  Rfj Re 

(4.42) 

and 

(4.43) 
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where use is made of the cubic symmetry of the lattice in the last calculation. Neglea- 
ing the terms in (4.42) and (4.43) of the order of the overlap, i.e. terms containing 
exp(-R!j/4a) and e r f c ( R i j / 2 6 ) ,  we arrive at 
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v = E,, + +CC M ~ ~ ( R ~ ~ ) s ~ s ;  (4.44) 
h j  E,$ 

where the elemenls of the second rank tensor M ( R i j )  are given by 

These tensor elements are identical to the elements M ( R i i ) U U ,  with p,v = x,y,z, 
I ,  

as given hy (4.2). 
The kinetic energy term T reads according to (4.28) and (4.32): 

we obtain using (4.35): 

(4.47) 

(4.48) 

Thus He, can he expressed as the following bilinear form: 

In order to determine the eigenvalues of HeR we make use of the commutator 

(4.50) 

which holds because of (433) and (4.34). Then HeK can be diagonalized analogous 
to Carr‘s procedure. Introducing 

(4.51) 
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we arrive at 

where okX and wkX are given by the eigenvalue equation (4.4). The operators SkA 
and PkX satisfy 

The effective Hamiltonian (4.52) can be rewritten in terms of the boson operators 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

where p = l / k , T  with kB and T denoting the Boltzmann constant and temperature, 
respectively. 

As to the internal energy (4.57) the following remarks should be made. First of all 
it only holds provided that exchange terms can be neglected. Such an approximation is 
only valid for the low density electron system at low temperatures. For the statistical 
weight of the higher excited states I+,,) increases with temperature, meaning that 
even at low density the overlap is not negligible at higher temperatures. The ground 
state energy is exact up to order I-;~'~.  The terms of order (Si - Sj)" ,  n > 2, which 
were also neglected, can be dealt with as a perturbation and give rise to terms of the 
order of T ; ~ ,  r?, r i 3 , .  . . in the ground state energy (see appendix 5). 

Carr's approach and ours become mathematically identical when identifying 
ri - Ri with &Si and ah:' with AE) .  That identity does not only hold for 
Can's harmonic term and our (Si - Sj)2 term but also for his anharmonic terms 
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and our corresponding (S, - S1)" terms. Consequently the energy terms of order 
r;', r;'/', r I S , .  . . can be calculated according to the theory of anharmonic lattices 
[ll-131. 

Finally we discuss the already mentioned epistomological questions arising from 
the semiclassical nature of 011's approach. 

(i) Cads results can be obtained indeed in a fully quantum mechanical way. 
Although the terms of our effective Hamiltonian and the corresponding ones of Cads 
expansion can be treated in a mathematically identical way, the present approach does 
not break the permutation symmehy. Therefore our effective Hamiltonian cannot 
result from Cads expansion. 

(U) The low density electron system can indeed be effectively described up to 
order ri3/' in terms of a system of free bosons, provided that exchange is neglected. 
The appearing boson operators AG) are bilinear expresrbns of the original fermion 
operators as follows from (431), (4.40). (4.47), (4.51) and (4.54). 
(E) The ground state I$,,) of the effective Hamiltonian (456) is obtained by 

requiring 
AkAld'O) = (4.58) 

for aU k and A. As shown in appendix 6 the requirement (4.58) gives rise to relations 
between the coefficients A;;;,, $y;(O) of the decompcsition (4.13) that completely 
determine I&). It should be remarked here that the correlated ground state I$,) still 
depends on a seemingly free parameter a. However, although the energy (4.57) does 
not depend on a, the choice of a is restricted by the requirement that overlap must 
be negligible for large r,. This means that the width al/' of the harmonic oscillator 
wavefunctions must be small compared with the nearest neighbour distance. 
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5. The effect of a magnetic field on the Wqner lattice 

A detailed study of the properties of the threedimensional lowdensity electron sys- 
tem in the presence of a magnetic field has never been published, as far as we know. 
The results as obtained by Fukuyama [14,15] and Fukuyama and McClure [16] in 
their study of the two-dimensional case with the field perpendicular to the lattice 
plane cannot be simply generalized to three dimensions. For the macroscopic mag- 
netic field is no longer the applied external field but an internal field, that must be 
determined self-consistently. This is done as follows. First an amau is chosen for 
the magnetic field. Next the response of the system to that field is calculated Then 
the internal field is calculated by means of Maxwell's equations with the response as 
source term and compared with the ansae. In case of difference the procedure is 
repeated starting from the calculated field, until self-consistency is obtained. 

In subsection 5.1 we use the described procedure to show that the lowdensity 
jellium model allows a homogeneous internal field. Besides the effect of this field 
on the ground state energy of the Wigner lattice is calculated exactly up to order 
T ; ~ ' ' .  The strength of the internal field cannot be calculated as boundary conditions 
are absent here. This means that it is unclear whether a field can actually penetrate 
into the system. For that reason in subsection 5.2 we pay attention to the effect 
of boundary conditions by considering the response to an inhomogeneous field. It 
appears that the system does not show the Meissner-Ochsenfeld effect, Le. the field 
does penetrate the system. 
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5.1. Homogeneous magnetic @Id 
In order to show that the jellium model allows a homogeneous magnetic field we take 
a constant internal field B = B i  as an ansatz. The jellium model in the presence of 
such a field is described in terms of the Hamiltonian 

where A is the vector potential defined by B = V x A and pg is the Bohr magneton 
eh/2mc. The last term in (5.1) describes the interaction of the electron spins with 
the magnetic field. The vector potential is chosen according to the symmetric gauge: 

A(r )  = $I3 x r = 'B[xy- 2 yi]. (5.2) 

In order to calculate the energy spectrum and the low-lying eigenstates of the 
Hamiltonian (5.1) up to order rr3" the procedure of section 4 is followed. The 
underlying assumption is that a small magnetic field does not destmy the Wigner 
lattice, i.e. the effect of exchange on the energies of the low-lying eigenstates is 
negligible for low densities. The behaviour of the quantum mechanical Wigner lattice 
is analogous to that of the classical lattice. Thus we can choose the positions of the 
lattice to be time-independent. It should be noted that the situation is quite different 
for an electric field. For each site R,, i = 1,. . . , 2 N ,  a complete set of one-electron 
functions that depend on the magnetic field B and the lattice site R, is chosen. 
These functions f&., are localized at Ri in such a way that their mutual overlap can 
be neglected for small 131. 

The eigenstates of (5.1) can be written as (cf (4.13)) 

with fER, being the Fourier transform of f:R,. 
Because the effect of exchange is neglected for low densities and low temperatures 

in a first approximation we can replace the original Hamiltonian (5.1) by the following 
effective Hamiltonian: 
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where 
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Clearly the low-lying states of He* and their attendant energies do not depend on 
the choice of the functions fs, as these functions are chosen to satisfy the following 
requirements: 
(i) they must form a complete set for each lattice site Ri; 
(E) their mutual overlap must be negligible for small 131. 

As will be shown a very convenient choice is 

(5.9) 1 e B  f,",,(~ - R i )  = exp iRi-(yi - .T$) fa(r  - R;)  [ 2ch 
where fa is the harmonic oscillator eigenfunction (4.12). Then the Fourier transform 
is given by 

e f$,(E) = fa E - -[Rj x E ]  ( 2ch 
(5.10) 

with fa being the Fourier transform (4.15) of the function (4.12). The functions (5.9) 
have the required properties as can easily be checked. 

(i) They form a complete set as follows from the completeness of the harmonic 
oscillator eigenfunctions 

(C) The overlap between functions localized around different lattice sites R, and 
& is given by (cf (4.16)) 
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and can indeed be neglected at low densities for small ljll and 1 ~ ~ 1 .  
Now the reawn for our choice of the functions f& is clear. For the matrix 

elements T&IJ1 do not depend on Ri due to the phase factor in (5.9). Further 
the factor does not appear in the matrix elements V&J,JsJs and as weIL 
Substitution of (5.9) and (5.10) into (5.6), (5.7) and ( 5 4 ,  respeaivefy, g m s  

The matrix elements (5.13) are given by (4.29). 
In terms of the operators 

and the operators C B i  defined by 

the effective Hamiltonian can be rewritten as 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 



where use has been made of (5.12), (5.13), (5.14) and the relation: 

%i ' B i  = d & i ( R i ) d B ~ i  ( R i  1. 
a 

(5.18) 

This relation holds provided that only low-lying eigenstates I+:) are considered and 
overlap is neglected. In that case we can also use 

(5.19) 

Further the operators (5.15) and (5.16) satisfy the following commutation and anti- 
commutation relations: 

Thus the operators DB ,,2 satisfy the same relations as the operators Dj,a2, given by 
(4.31), i.e. the results of section 4 can be used directly as far as the interaction t e r m  
in He, are concerned. Next we reHTite the remaining terms using (5.19). Then the 
following expression is obtained for He,: 

where 
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and 

The second rank t e m r  M ( R i j )  is given by (4.45). 
In order to obtain the eigenvalues and eigenstata of the lowdensity electron 

system in a homogeneous magnetic Eeld up to order ~ 6 ~ ' '  all higher order terms 
represented by Vi in (5.21) are neglected and the following tensor is introduced 

M B ( R i j )  = M ( R i j )  i # j 

In terms of the boson operators 

(5.25) 
where wBkx and c$  are given by the eigenvalue equation 

C2k.R*~B(~i)~,B,  = (5.26) 

the effeaive Hamiltonian can then be expressed as 

1 = ECl + ['WBkA[$ + A2kAABkAl  + ZipBB'(cfAg cfA)AikA,ABkA 
A' 

- p B B  2 N  - ~ 2 C $ , C B ;  . (5.27) 

This Hamiltonian consists of two different parts. The first part describes a system of 
non-interacting bosons, where the different polarizations X are mixed because of the 
magnetic Eeld. The second part represents a system of uncoupled paulions according 
to (5.19) and (5.20). Both parts commute with each other as follows from (5.20). 

The boson part of Hamiltonian (5.27) is a bilinear form of the boson operators 
and can therefore be diagonalized by the unitary transformation 

[ ;  I 

Bkc = x u A p A B k A  
A 
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where 
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C U A P U i P *  = 6,,, 
x 

and 

E U ~ , , U ~ , ~  =SAX, .  

Substituting into (5.27) the inverse transformation 

P 

= cui# Bkp 
P 

A g k A  = zUA@ 
P 

(5.29) 

(5.30) 

(5.31) 

the effective Hamiltonian a n  be represented as 

= E a  + hwsrx + Z h E k ,  B*+Bk, - P B B  2h' - 2  x g i x ~ i ]  

(5.32) 

The frequencies appearing, EkP and the operators Biz)  are determined by the 
eigenvalue equation 

kX *a [ i  

z R : A r u A ' p  = Ekp"Xp (5.33) 
A '  

where the hermitean matrix Rk is given by 

Otx ,  = ~~~~8~~~ + i h  P B B  - ( E & ,  x E,", ) .  (5.34) 

The eigenvalues Ekp are the solutions of the following third order algebraic equation: 

( E k p  - w B k l ) ( E k p  - w B k 2 ) ( E k g  - w B k 3 )  

= w k 3 ( E k p  - w B k l )  + wz31(Ekp - w B k 2 )  +wf12(Ek, - w B k 3 )  (5.35) 
with 

(5.36) 

Thus the energy spectrum of the original Hamiltonian (5.1) is known up to order 
, as follows from the expression (5.32) which is the sum of a free boson and an 

B 
WCAA' = %. (E&' x &. 

-ala 
T~ 

uncoupled paulion system. The corresponding eigenstates are given by 

(5.37) 
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where nkp and n; are boson and fermion occupation numbers, respectively, Le. 
nkp = O , l ,  2,3,. . . and ni = 0 , l .  The ground state [+,a) is obtained using the 
representation (5.3) and 

s~iI&? = = 0 (5.38) 

for all i, k and p. As expected aU spins are directed along the magnetic field in the 
ground state. 

The thermodynamic properties at low temperatures T = l /kBp follow directly 
from the internal energy 

E = E,, + hxfWshx - 2 N p B B  + ZliEhp[eShEEl* - 11-l 
LA h p  

+4NpBB[eZPeBP + 11-l. (5.39) 

Finally we have to show that a homogeneous field in the jellium model can exist 
according to Maxwell's equations. This means that the response of the system to 
the supposed homogeneous field, ie. the current density, must be calculated. The 
current density operator 3(r) ,  which is defined by the equation of continuity, is for 
the present system 

where A(+) is given by (5.2). Analogous to the Hamilton operator the current density 
operator can be replaced as well by an effective operator having the same eigenvalue 
spectrum as 3(+) provided that overlap is neglected. This effective current density 
operator is given by 

(5.41) 

where 

Substituting (5.9) into (5.42) we obtain 

It should be remarked that the current density operator as given by (5.41) and (5.43) 
can be interpreted in terms of electrons moving around lattice sites. Hopping does 
not appear because overlap is neglected. 
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The full translational symmetry of the original Hamiltonian (5.1) implies that the 
current density 3 must be homogeneous as well. That quantity is obtained in the 
usual way by averaging the symmefq-broken thermal average (JcR(r)) over a unit 
cell of the Wgner lattice, ie. 

(5.44) 

where ncell and Ri denote the volume and position of the unit cell, respectively. 
Substituting (5.41) into (5.44) and neglecting all terms containing exp[-R:j  / 2 a ] ,  
i # j ,  as they are of the order of the overlap, we obtain 

(5.45) 

where J ; , , ~  is given by (5.43). Because (D;,,J is invariant under lattice translations 
the uniform current density can now be expressed as 

where SLi and P' . are given by (5.23). From (5.25) and (5.31) we get 
BE 

(5.47) 

Substituting (5.47) into (5.46) and using that for E = 0 the solutions of the eigenvalue 
equation (5.26) are given by 

87rNe2 
mwBo3 = - 81rNe2 &B2m 

+ h2 3n 
mu;,, = mwBo2 = - 
col = 2 , C Q 2  = j jCQ3 = i 

30 

we arrive at 
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where Re( z )  and Im( x )  denote the real and imaginary part of the complex number 
2, respectively. Clearly (B$J = 0 in the free boson approlrimation (5.32), ie. 3 = 0. 
That conclusion also holds for the interacting boson system described by (5.21), as 
can be seen in the following way. The eigenstates required to calculate (B&) are 
now eigenstates of Hamiltonian (5.21). These states, when represented as linear 
combinations of the eigenstates I$,") of the free boson Hamiltonian (5.32), have the 
property that they do not contain the terms I$,") and B$,,l$E) simultaneously. That 
property, which immediately implies (B$,,) = 0,  follows directly from the calculation 
of the matrix elements ($,"~V,B&~$,"), which are zero due to the structure of V; 
given by (5.22) and (5.47). 

Now it can be concluded that the lowdensity jellium model indeed allows a 
homogeneous internal magnetic field. For 3 = 0 and the Maxwell equations do give 
such a field. 

5.2 Response to an inhomogeneous magnetic fie12 
Subsection 5.1 deals with a low-density jellium model having a homogeneous inter- 
nal magnetic field. The question, however, whether an external magnetic field can 
penetrate into the system thus creating the internal field, is not answered. For an I 

answer to that question requires the introduction of boundaries and external field 
sources, which destroy the translational invariance explicitly used in subsection 5.1. 
The situation that a magnetic field does not penetrate a given system is known as the 
Meissner-Ochsenfeld effect. In order to discuss the eventual appearance of that effect 
in the low-density model we calculate, analogous to the procedure of the Bn-theory 
[17,18], the response of the system CO an inhomogeneous magnetic field. Such a field 
is generated by some source current density in the interior of the still infinite system. 

In order to examine the possible existence of the Meissner-Ochsenfeld effect we 
only need to calculate the linear response of the system to the magnetic field, ie. the 
linear relation betwccn the induced current density j ( r ,  f) and the vector potential 
A(r, t). This means that the magnetic field is assumed to be very small and all terms 
of order IAl", n 2 2, are neglected. 

The criterion for the appearance of the Mcissner-Ochsenfeld effect is [18] 

lim limJ(q,w) = - K l i m l i m  A(q,w) 
q-ow-0 '1-0 w-0 

(5.49) 

where K is a non-zero constant and j ( q , w )  and A(q,w) are given by the Fourier 
decompositions 

A(r,t)  = - 1 z A ( q , t ) e i q "  = - & lI dwA(q,w)eiq"e-'w' 
q 

n 

(5.50) 

The condition (5.49) is a relation between macroscopic quantities. This means in 
the present case that the local field and current density must be averaged over one 
unit cell of the Wigner lattice. It should be remarked that the resulting macroscopic 
quantities are no longer identical here to the microscopic ones as contrasted with the 
situation discussed in subsection 5.1. 
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Up to order IAl the Hamiltonian can be expressed as 

H = H(0) + H(1) t H, (5.51) 

where H(0) is the Hamiltonian (3.1) of the jellium model, H ,  is the term describing 
the interaction between the electron spins and the magnetic field, and H( 1) is given 
bY 

(5.52) 

The explicit form of is not given here, as Hs does not affect the current density 
for the following two reasons. First of all Hs commutes with the charge density 
operator p ( r )  = C,,+:(r)$,,(r), Le. I f s  plays no part in the equation of continuity 
that determines the current density operator. Secondly the neglea of the overlap 
between oneelectron wavefunctions localized at different lattice sites entails that the 
only effect of Ha on the eigenstates of H(0) + H(1) is the removal of the degeneracy 
of these states with respect to all possible spin configurations of the lattice. Clearly 
then we only need to consider the Hamiltonian ?f = H ( 0 )  t H(1). 

Next we replace N(l) by an effective Hamiltonian N(l)eR analogous to the 
procedure discussed in section 4, i.e. we neglect the effect of exchange: 

where fa and D& are given by (4.15) and (4.31), respectively. The boson represen- 
tation of this Hamtltonian is obtained in the following way. Using the relation for 
the Hermite polynomials, 

we arrive at 

where Pl is given by (4.47) and use is made of (4.35). Next we expand the right hand 
side of (5.55) in terms of the components of f i q .  Such an expansion is explicitly 
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done up to fourth order in appendix 5. The resulting expresion (AH) can be directly 
generalized to the following result: 

m 

= 1 + X O ( d  + xi,,..~M(9)s;I,s;;2.. . SiM (5.56) 
M=1 E',.& 

where Si is given by (4.40) and the functions xo and xil,,,iM satisfy 

lim x 0 ( d  = lim xi,.,,iM(d = 0 .  (5.57) 
'1- 0 q-0 

Substitution of (5.55) and (5.56) into (5.53) gives 

This Hamiltonian can be easily expressed in terms of the boson operators Ai:), 
using (4.51) and (4.54). The relevant Hamiltonian, F= H ( 0 )  + H (  l), can now be 
replaced by the following effective Hamiltonian: 

- 
Hen = H('J),n + H ( ~ L R  (5.59) 

where, as shown in appendix 5, H(O) , ,  has the following form 

with 

(5.61) 

whereas H(1), is given by 
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(5.62) 

The summation over K,, in (5.61) and (5.62) runs over all reciprocal lattice 
vectors In obtaining (5.61) and (5.62) we assumed that the origin of our coordinate 
system coincides with a site of the Wigner lattice. That assumption does not influence 
our conclusion concerning the eventual appearance of the Meissner-Ochsenfeld effect 
as we are only interested in the macroscopic current density. 

Now we discus an important property of the eigenstates IF,,) of H(O),, for the 
sake of the calculation of the current density. The states Ipn) are linear combinations 
of the eigenstates of the free boson term of (5.60). For convenience' sake this 
complete set of states I+,) is divided into subseB consisting of those eigenstates 
I + , I K )  that have the same total wave vector K given by 

K = x n k x k  
hA 

(5.63) 

with nkA = 0,1,2,. . . being the occupation number of the one-boson state IkX). 
Because of the factor 6,,1+,,,+hM,Kn in (5.61) the complete set of eigenstates Ip,) of 
H(O) ,  can now be divided into subsets consisting of eigenstates IqnK) satisfying 

where the summation over I runs over the subset consisting of states that have the 
total wave vector K + K, and the constan& CyKs satisfy 

where sgn(j) = +1 or sgn(j) = -1 and K ,  may be any reciprocal lattice vector. 

given by 
The current density operator, which follows from the equation of continuity, is 

(5.61) 



Quantum fieki approach to a lowdensity electron system 797 

where 

and 

(5.69) 

are the Fourier transforms of the paramagnetic and diamagnetic current density oper- 
ator, respectively. The effective operators corresponding with j P ( q ,  1 )  and J D ( q ,  t )  
read 

(5.71) 

As follows from (5.49) we only need to consider &(q, t )  and &(q, t) in the limit 
q -+ 0. Using (5.55), (5.56) and (5.57) we obtain 

lim &(q, t )  = lim (* z A ( q  - q', t)eiq"R. [ 1 + xo(q') 
q-0 q-o m e n .  

1.9' 

In terms of the boson operators these expressions read 

(5.72) 

(5.73) 

(5.74) 

(5.75) 
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The macroscopic quantity limqeo3(q, w ) ,  that appears in the criterion (5.49) for the 
Meissner-Ochsenfeld effect, can now be calculated provided that A(q,1) is inter- 
preted as a Fourier component of the macroscopic field. This interpretation implies 

L G J van Dijk and G V e K O p  

l i m A ( q + K , , t ) = O  for Kn#O. (5.76) 
9-0 

The calculation goes as follows. Up to linear order in the field A(q, 1 )  the Fourier 
component 3(q,  t) of the macroscopic current density is given by 

3(9, t )  = 3 p ( q , t )  + J D ( P ,  t )  (5.77) 

with 

and 

The thermal average (. . .) is taken with respect to the eigenstates Ip,,) of H(O),, 
ie. 

-1 

(...) = [ c ~ - B E * ]  [Ce-BE-(pnl...lpn)] 
n n 

with En being the energy corresponding with Ips). The expression (5.78) has been 
derived by Kubo [I91 using hea r  response theory. The factor e'' in the integrand 
indicates that the field is switched on adiabatically. Substituting the expressions 
(5.62), (5.74) and (5.75) into (5.78) and (5.79), respectively, and using (5.57), (5.66) 
and (5.76) we arrive at 

where G,(t - T) is a retarded Green function, given by 

and 

D 2 N e 2  l i m j  ( q , t )  = -lim-A(q,t). 
9-0  q-0 men (5.83) 
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Consequently the Fourier transforms j (q ,  U)  and A(q, w), as given by (550), satis@ 
the following relation: 

q-0 w-o e-o m& lim lim ~ ( q , w )  = lim lim lim 
q-ow-0 

with 

The Enal step of the calculation consists of determining the Fourier transform G,(w) 
of the retarded Green function (5.82) in the limit w + 0. This is done by using 
the equations of motion for the retarded Green functions. The relevant equations of 
motion are 

(5.89) 
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The Fourier transform G M ( w )  of the Green function G M ( t ) ,  given by (5.88), 
is a very mmplicated function of w. A formal expression, however, can be obtained 
from (5.80): 

where use is made of the identities 

and 

(5.92) 

After rewriting (5.90) as 

M 

we obtain 

lim lim(w + is)GM(w + ic)  = 0. (5.94) 
"-0 c-0 
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Substituting (5.89) and (5.94) into (5.84) we finally arrive at the decisive relation 
between j ( q ,  w )  and A(q, w ) :  

lim lim j (q ,  w )  = lim lim - A(q,  w )  + A( -q, 
q-ow-0 q-ow-o m e n  

Now we can directly conclude that the low-density electron system does not show a 
Meissner-Ochsenfeld effect as the imaginary pan of A(q, w )  disappears in the limit 
q -+ 0. 

We wish to remark that the present conclusion only holds for sufficiently low 
densities where the effect of exchange can be neglected. This neglect, however, 
does not automatically mean that the appearance of a Meissner-Ochsenfeld effect 
could be excluded a priori, for the ground state of the low-density system is highly 
correlated. Apparently the electrorrelectron correlation, which is described by the 
effective Hamiltonian zeR given by (5.59), does not give the necessary rigidity to 
the system’s wave function for resisting the magnetic field [20]. This absence of 
sufficient rigidity in the low-density system does not follow a priori from a general 
argument, as far as we know. Likewise the effect of the exchange on the rigidity 
cannot be predicted Consequently the question is still open whether the model 
shows a Meissner-Ochsenfeld effect at higher densities. 

6. Conelusions 

In this paper the low-density electron system has been studied Within a purely quan- 
tum mechanical context. It appears that the semi classical approaches of Wigner and 
Carr can be justified. The results of Wigner’s approach of the low-density electron 
system are identical to those of a Hartree-Fbck theory with the ground state being 
a Slater determinant of 2 N harmonic osdlator ground state functions localized at 
the sites of a regular lattice (section 3). The effect of exchange has been considered 
as well leading to the conclusion that a ferromagnetic lattice is favourable to an 
antiferromagnetic lattice for T, > 14. 

In order to reproduce the results of Carr’s approach the quantum mechanical cal- 
culation must take into acmunt the effect of electron-electron correlation (section 4). 
Now the eigenstates are expressed as linear combinations of all possible Slater de- 
terminants of 2N harmonic oscillator eigenfunctions, localized at the sites of the 
Wigner lattice. An important result of the theory is the existenoe of an effective free 
boson Hamiltonian generating the exact eigenstates and energy spectrum up to order 
v ; ~ ” .  The appearing boson operators have been expressed completely in t e m  of 
the original fermion operators 

The implications of the approach, as developed in section 4, are not restricted 
to the low-density electron system only. Any lattice of atoms or ions can be treated 
in exactly the same way as the Wigner lattice of electrons. The results, obtained by 
neglecting the effect of exchange, are then identical to those of Born’s lattice theory. 
Thus we have completely justified Born’s lattice theory from a quantum mechanical 
point of view. 
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Finally the approach of section 4 has been applied to the jellium model in a 
magnetic field (section 5). By way of calculating the current density we have shown 
that the low-density jellium model allows a homogeneous internal magnetic field. 
' h e  eventual appearance of a Meissner-Ochsenfeld effect has also been discussed, 
the conclusion being negative for a lowdensity system. 

i = l  

(A1.3) 

whose validity directly follows from HI) = 0. Next we rewrite (A1.3) as 

2N 
+ x(-1)2N-i ( d t ~ ( R , ) ) [ H , d $ , ( R i ) I I ) .  (A1.4) 

i=1 m#i 

Substituting (A1.4) into (Al.l) and using 

we arrive at 

(A1.5) 

(A1.6) 
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Now Wick's theorem can directly be applied to this expression, as the foUoWing 
relations hold 

i(&-q).R;,-i(k'+q)R. t -- - (' E' E V( 9 )  p' ( k-q) p' ( k'+ d e -  ' Ck7; c:, r, . 
q k,&' 

(Al.8) 

The resulting expression for EHF is given by 
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form A(;) = j ,  X ( j )  = i, i # j. Neglecting the remaining terms, i.e. considering 
only two-particle exchange contributions, we obtain 

EHF = IC12( ~ S ( 0 ) a N - ' K ( O ) +  ? j x S ( 0 ) 2 N - 2 P ( O ; O ; R i - R j )  

L G J van Dijk and G Vmogen 

i i # j  

C C 6 , , S ( 0 ) 2 N - 2 [ K ( R ;  - Rj)S(Rj - R;) - [  i j # i  

+! jP(R;-Rj;Rj  -R i ;R i -R j ) ]  

+ 6,,,,,S(Rm -Ri)P(R( - Rm;O;Ri - Rj)  
+6,,_S(Rm-Rj)P(O;Rj -Rj)] 

+ cc c a6r,,.s(o)2N-4s(Rm - 
i j # i  m#i,j n#m,i , j  

(A1.14) I >  x P(O;O;Ri - R j )  

where 

(A1.15) 

1 -l 
lCI2 = [ S ( 0 ) 2 N  - $E S ( R ,  - Rn)2S(0)2N-26,m,m 

m n#m 

= S ( 0 ) Z N  + ?jZ S ( R ,  -Rn)2s(o)2N-2a,m,m. 
m n#m 

Thus the first term in the expansion is 

EHF(0) = Z N K ( 0 )  + ? j c P ( O ; O ; R i  -R,) (A1.16) 

where we have used that S(0)  = 1. This expression, together with (A1.12) and 
(A1.13). gives the Hartree energy (3.14). The next term is of order S(Ri  - and 
given by 

AE,, = C c 6 , i , [ K ( 0 ) S ( R j  - Ri)' - K(Ri  - Rj)S(Rj  - Ri)  

i # j  

i j # i  

+ $P(o;o ;  R, - R,)s(R, -R,)~ - $P(R,  - R,; R~ - R ~ ;  R~ - R,)] 

- 6,,,,,P(R; - R,;O;Rj - Rj)S(R,  -R i )  
+ 6,,_P(O;O;R; - R j ) s ( R j  - R,)2 

- srjrl P(0;  Rj - R,; Ri - Rj)S(Rm - Rj) ] .  (A1.17) 

The magnitude of AE,, depends on the spin conIiguration of the electron lattice. 
For a ferromagnetic spin state, i.e. 7, =t or 7, = 3  for all R = 1.2,. . . , 2 N  we get 

AEk, = 2N[K(0)S(R , )2  - K(R,,)S(R,,)  
R.#O 
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- 'P(R,,;-R,,;R,) a + $P(O;O;R,)S(R,)2] 

i- ~N[P(o;o ;R , ) s (%)2  - P(R,;O;R,,)S(R,,,)I. 
R.#OR,#R,,O 

(A1.18) 
For an antiferromagnetic spin state, i.e. I,, =r for all electrons localized at the 
sublattice sites R, ( n = 1,. . . , N ) and T,, =1 for all electrons localized at R, + 6 
( n = l , . .  . , N  ), A h F  is given by 

A%F = 2N[K(o)s(R,)2 - K(R,)S(R,) 
R,#O 

+ 2N[P(O; 0 ;  R, +6)S(R,)'- P(R,; 0 ;  B,, + 6)S(R,)] .  

(A1.19) 

The unknown wavefunction f, that appears in (Al.Il), (A1.12) and (A1.13), is deter- 
mined by the minimization procedure as discussed in section 3. Using the resulting 
Gaussian wave packet (3.16) we obtain 

(A1.20) 

Rm R,#O 

(A1.21) 

(A1.24) 

After performing the sums over R,,, we arrive at the expressions (3.25) and (3.26) 
respectively. 
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Appendix 2 

The functional EH(f), as given in (3.14), can be rewritten as 

L G J van LXjk and G V‘op 

+ f U ( R n  - R,) - l i m 2 N a ~ ( g )  0-0 

m#n 

w-1) 

where 

and 

This expression can be easily minimized provided that U ( R n  - R,) is replaced by 
the true Coulomb potential. Then (A21) reads 

where the energy of the classical electron gas, E,,, is given by 

( f i 5 )  

It follows from the form of the expression (A24) that EH(f) is minimized by a real 
and isotropic function Consequently we can use the expansion: 

(A24 

with j ’ ( k )  = d f / d k  and P(k) = d2f/dk2. Substituting (A26) into (A2.4) and 
wing 

k2d k[  p( k ) + i j ’ (  k ) ]  f (  k )  
lim -{ 4ne2 [ Jd3kf(k+q)j’(k) 
q-0 nq2 
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we arrive at 

where the Lagrange multiplier X has been introduced in order to take. into account 
the n o n n ~ t i o n  of f. The function f is now determined by the Euler equation 

(D) 

where 

This means that f complies with the differential equation 

('4211) 
4n N e Z  d2 hZ k2 --- 
3 Q ddcn 

The normalized solution of (A2.11) reads 

and the Lagrange multiplier is given by 

8rrNe2a 
0 A =  

with 

(A2.13) 

The real space. wavefunction fo, which is the Fourier m f o r m  of (A2.12), is given 
in (3.16). 

It should be remarked that the approximation of replacing U(& - &) by 
the true coulomb potential can be jusxified starting from the. wavefunction (A212). 
Substitution of this function into the real expression for U(& - R,) gives 
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where erfc is the complement of the error function As efc(z) U e-=' for x + 00, 
the difference between U ( R ,  - R,) and the Coulomb potential is of the order 
S ( R ,  - R,,,)2, where the overlap S ( R ,  - R,) is given in (3.22). Consequently 
the replacement does not affect EH( f )  provided that all terms of the order of the 
overlap can be neglected. The minimum of EH( f )  can easily be found by substituting 
(A212) into (A2.8) and reads: 

L G J van Dijk and G Rrtogn 

E$) = E,., + 2 N X .  (A2.16) 

Next we minimize the Hartree-Fbck energy up to order S ( R ,  - R,,,)' starting 
from the expression 

& ~ ( f )  = E H ( ~ )  + A E H F ( ~ )  (-42.17) 

where E H ( f )  and A E H F ( f )  are given by (A2.1) and (A1.17) respectively. With the 
aid of the complete set of harmonic oscillator eigenfunctions f, we can express the 
variational function f as 

(A2.18) 

where f o ( k )  is given by (A2.12), and the coefficients AJ are variational parameters. 
We remark here that f is normalized up to order S(R,  - as will be clear 
from the following. Substituting (A218) into (A2.17) and using the orthogonality of 
the functions fl, EHF(f) can be written in the following form 

E H F ( ~ )  = ~ w ( f o )  + ~NC[C,IA,I' - ACJA, + A;)] ( ~ 1 9 )  
J # o  

with Em(f0 )  given by (3.27), (3.28) and (3.29), whereas C, and AC, are constanls 
of order S ( R ,  - R,)' and S ( R ,  - respectively. Minimizing EHF( j) with 
respect to A, we get 

(A2.20) 

Thus the function that minimizes E H F ( f )  consists of (A2.12) and terms of order 
S(R,,, - R,)z. It follows directly from (A2.21) that the contribution of these mr- 
rection terms to E H F ( f )  is of order S ( R ,  - R,)4. Consequently E H F ( f O )  is the 
correct minimum of EHF(f) up to order S(R,,,-R,)2. The constants C, and AC, 
can in principle be calculated exactly. In section 3, however, we restrict ourselves to 
an approximate calculation as the precise form of the wavefunction seems of little 
interest. 
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Appendix 3 

Consider the following sum over reciprocal lattice vectors 

where a is an arbitrary vector and the function V, depends on the variational param- 
eter Q as introduced in section 3. After Ewald the parameter p is introduced and E 
is rewritten as 

E = C [ V , ( K , )  - Va(K,)]eiK-'"- lim[V,(q) - Vp(q)] 
-2-0 

K .  

+ Va(K,)e'K*.a. 
K,#Q 

Next we substitute into (A3.2) the Fourier decomposition 

with 

Using the identity 

where R, denotes a lattice vector ( II. = 1,2 , .  . . , 2  N), we then obtain 

1 
E = - C[U,(R, +a) -  up^^, +a)] - lim[v,(s) - V~/P(P)I  

' I -0 2 N  R. 

+ V-(K,)eiK~--. 
K.#O 

Substitution of (3.24) into (A3.6) results into 

Putting a = 0 the term in (A3.7) corresponding with Rn = 0 appears to be: 
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Appendbr 4 

Aceording to Can [SI the two-particle exchange gives the following contribution to 
the energy of a ferromagnetic lattice: 

L G J von Lhjk and G V&op 

Ali&=-fCJ;; 
i#j 

where J i j  is the two-particle exchange integral 

(A4.1) 

J . .  = d3rld3rzfl(rl - R;)fl(rz - R;)H(1,2)f0(r1 - Rj)fo(rz  - R;)  

- S(Ri - Rj)2/d3rld3r2fl(rl  -R;)fO.(rz - R,) 
‘J J 

x Wl,2)fo(r1 - Ri)fo( . z  - Rj) .  
(A4.2) 

The appearing wavefunction fo and the overlap S are given by expressions (3.16) 
and (3.22), respectively, and the effective two-particle Hamiltonian ff( 1,2) reads 

(A4.3) 

In order to compare Carr’s calculation of the two-particle exchange energy with 
the present one (A4.3) is substituted into (A4.2) resulting into 

(A4.4) 

where Rij = Ri - R. and AJ,, is the contribution due to the interaction of the 
electrons with the posltive background, 

A J i j  = 

I 

d3r ld3r , f~( r l  - R j ) f , ( r z  -Rj)AH(1,2)fo(r1 - Rj)f,(r2 - R;) 

- S ( R j  -Rj)’Jd3rld3rzf~(rl  - R ; ) f l ( r z - R j )  

x AIf( l72) fO(r l  - R;)fo(rz - R j )  

J 
(A4.5) 

with 

-2N 1 AH(1,Z) = - a (A4.6) 
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Now the magnitude of A Jij appears to depend on the way the integration in (A4.6) 
is performed. Carr’s procedure consisted of first integrating over a sphere with a 
given radius L and afterwards taking the limit L -+ 00 giving 

and 

This actually means that Carr’s definition of the jellium model differs from the usual 
one as given in section 2. According to the usual definition the Coulomb potential l/r 
must be replaced by the Yukawa potential e-J”/r and the limit p -+ 0 taken after 
performing the integration. Such a procedure results into AH(1,Z) = A J ,  = 0. 
Only then the substitution of (A4.4) into (A4.1) leads to the expression (3.28) for the 
ferromagnetic two-particle exchange energy. That follows directly from the choice 
p -+ 03, where p denotes the Ewald parameter. Thus the discrepancy between 
Cam’s and our expression for the exchange energy can be completely understood 
in terms of two slightly different definitions of the jellium model. This difference 
in definition, however, does not account for the large discrepancy in Critical density 
for ferromagnetic behaviour. The two critical densities are given by rs N 270 and 
rs e 14 respectively. Carr’s result rp Y 270 is based upon the following three 
approximations for J i j .  

(i) The error functions were set equal to one, i.e. Jij  was expressed as 

(A4.7) 

(ii) The parameter a was given by the Wgner value $-t/2aJ. 

(i) The contribution of the sum over R, was neglected in (A4.7). 
These approximations lead to a positive nearest neighbour exchange integral, Le. 

to a ferromagnetic lattice, for vs % 270. The approximations (i) and (ii) are both 
justified because they neglect only irrelevant terms, i.e. terms of order S ( R i j ) ” ,  
n 2 4. Approximation (i), however, is certainly not justified as follows directly from 
a calculation of the first few terms in the sum over R,. This is the main reason 
for the discrepancy between Cam’s and the present result. The correct contribution 
of the sum over R, can be found using the Ewald summation method, as done in 
section 3. 

Appendix 5 

The interaction operator V is calculated by substituting (4.37) into (4.30). Then we 
get up to order q4: 

J d 3 k 1 , ( k ) 1 ; ( k h  d 
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and 

with 

a 
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Using the effective properties (4.34) and (4.35) of the operators DJZJ9 the following 
expressions for the operators as defined in (A53) are obtained 

L G J van Dijk and G Vertogen 

Substituting (A5.4) into (A5.Z) we arrive at: 
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and 

where use is made of the cubic symmetry of the lattice in calculating (A5.9). Sub- 
stitution of (A5.8) and (A5.9) into (A5.7) leads to expression (4.38), where we have 
neglected all terms containing exp[-R:/4a] and erfc( Rn/2@. 

Higher order contibutions to V, i.e. contributions containing (S, - S,),, M > 
4, can be found analogously and are expected to be given by the following expression, 
that holds also for M = 3 and M = 4: 

('45.10) 

where all terms of the order of the overlap are neglected, and the gradient operator 
V,, is given by 

Using the results of section 4 the effective Hamiltonian can be written as 
m 

('6.11) 

(A5.12) 

where the boson operators A$,:) are related with the operators Sn according to 

(A5.13) 

Substituting (A5.13) into (A5.10) we find that the contribution of V, to the effective 
Hamiltonian consists of terms proportional to R;y-luijM. This implies that V, 
is proportional to r8 as R,, and wk, are proportional to rs and rr3la, 
respectively, and V, is independent of a. On the basis of perturbation theory we 
can then conclude that the ground state energy of (A5.12) is a power series in 7-F1'* 

with the additional properiy that all odd powers of rail4 do not appear. 

-*,-I 
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Appendix 6 

The ground state of the low density electron system can be expressed as (cf (4.13)) 

I&) = A ~ ~ . ~ , ~ ~ ( o ) ~ A ~ ~ ( R ~ ) , .  . . T d k N u , N ( ~ N ) I ) -  (A6.1) 
a1 ,.. . 0 1 N  
Ul,...,UlN 

Up to Order the coefficients A;;,;;Z;(O) are determined by the requirement 

A k A l h )  = (A6.2) 

for aU k and A. The operators A,, are given by, according to (4.31), (4.40), (4.47), 
(4.51) and (4.54), 

with 

Substituting (ACi3) into (A6.2) we obtain 

X dAul(Ri) , .  .' ~ d ~ z N u 2 N ( % N ) l )  = 0 (A64 

for all k and A. Thus for all sets { j l , .  . . , j Z N }  and {ul,. . . ,uaN} we have the 
following 6 N  h e a r  equations: 

(A64 

for all k and A. These equations give rise to recursion relations between mefficients 
A;;,;:;((O) with different j = Ci,tji . i starting with j = 0 and j = 1. The 
complexity of these relations increases with increasing j and actually prevents a 
calculation of all coefficients. Nevertheless a few conclusions can be drawn from 
(A6.6). 

(i) The coefficients with j odd are all zero. This can easily be seen for j = 1 by 
substituting j 1  = j 2  = . . . = j Z N  = 0 into (A6.6). .& the recursion relations only 
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contain coefficients with j = j, and j = io + 2, j, = 1 , 2 , 3 , .  . ., all coefficients with 
j odd must be zero. 

(U) The coefficienm A;;,::Z;(O) with j even can all be expressed in t e r m  of 
A:.'';"lN(0). They decrease as [ ( J ~  ..9!]-'" with increasing j i  . {, i = 1,. . . ,2N. 
The coefficients A~,!f~""(O) can be chosen almost completely arbitrarily, the only re- 
striction being that the ground state must be normalized. This means that the ground 
state is degenerate with respect to all possible spin configurations {U',. . . , ozN) of 
the lattice. As discussed in section 3 this is due to the neglect of exchange contribu- 
tions to the ground state energy. 
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